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PRO-LDM: A Conditional Latent Diffusion Model for Protein
Sequence Design and Functional Optimization

Sitao Zhang, Zixuan Jiang, Rundong Huang, Wenting Huang, Siyuan Peng, Shaoxun Mo,
Letao Zhu, Peiheng Li, Ziyi Zhang, Emily Pan, Xi Chen, Yunfei Long, Qi Liang, Jin Tang,
Renjing Xu,* and Rui Qing*

The diffusion model has grasped enormous attention in the computer vision
field and emerged as a promising algorithm in protein design for precise
structure and sequence generation. Here PRO-LDM is introduced: a modular
multi-tasking framework combining design fidelity and computational
efficiency, by integrating the diffusion model in latent space. The model learns
biological representations at local and global levels, to design natural-like
species with enhanced diversity, or optimize protein properties and functions.
Its modular nature also enables the integration with alternative pre-trained
encoders for enhanced generalization capability. Outlier design can be
implemented by adjusting the classifier-free guidance that enables PRO-LDM
to sample vastly different regions in the latent space. The approach is
demonstrated in generating a novel green-fluorescence-protein variant with
notably enhanced fluorescence in multiple working scenarios along with
increased solubility and stability. The model provides a versatile tool to
effectively extract physicochemical and evolutionary information in sequences
for designing new proteins with optimized performances.

1. Introduction

Proteins are miniscule molecular machines that perform indis-
pensable biological functions to sustain the life of organisms.
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Yet natural proteins only occupy a small
fraction of the vast sequence space. Pro-
tein design probes into the unexplored ter-
ritory, by modifying natural species or con-
structing sequences from scratch.[1] Com-
pared to rational design[2] and directed-
evolution,[1] computational design meth-
ods leverage the ever-expanding protein
databases to facilitate accurate sequence
and structure generation, while reduc-
ing the reliance on high-throughput ex-
perimental screening.[3] Emerging deep
learning-based algorithms provided new
computational toolkits that changed the
paradigm in molecular biology research in-
cluding protein structure prediction and
protein design, which are problems on two
sides of the same coin.[4]

Deep generative models are widely
adopted due to their excellent track record
in language and image processing. The
state-of-the-art (SOTA) generative model,
i.e. diffusion model, can effectively sample

complex distributions with integrative and controllable refine-
ment processes that robustly generate high-fidelity and more di-
verse data.[5,6] The current use of diffusion models in protein de-
sign primarily focuses on structure-related tasks. Lee et al. de-
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veloped a score-based generative model ProteinSGM to design
proteins with conformational folds not present in training sets,
and generated structures that could insert masked sequences
corresponding to native conformations.[7] RFdiffusion from the
Baker lab was derived from fine-tuning the RoseTTAFold on
protein structure denoising for main chain generation, which
has been used for unconditional design, binder design, enzyme
site design, etc.[8] Other structure design frameworks such as
FoldingDiff,[9] DiffSBDD,[10] DiffSDS,[11] and Chroma[12] also
performed well in various tasks including single-chain structure
design, ligand docking, and protein complex generation.
However, high-quality protein structural data is still lack-

ing in terms of dataset size and granularity compared to se-
quence data. Sequence design is herein a more direct genera-
tive approach explored by researchers. Several groups reported
the use of diffusion models in this approach, including EvoD-
iff, a framework that uses evolutionary-scale data to generate
natural-like proteins,[13] and LaMBO-2, a method with diffusion-
optimized sampling to increase the yield and binding affinity of
antibodies.[14] However, these models were still limited by high
computational demands during pre-training with large datasets
or evaluating the weights of amino acid positions, while demon-
strations were mainly on sequence completion tasks and a few
design cases. Such computational demands could be reduced by
using a latent diffusion model. Similar pipelines were reported
by integrating reinforcement or contrastive learning in the latent
space, for fitness optimization or peptide ligand screening.[15,16]

Herein, the capability of diffusion models to learn biophysico-
chemical properties within sequences for full-length protein de-
sign remains to be explored.
On the other hand, the potential of an algorithm lies within

its ability to address real biological problems beyond traditional
engineering means, such as tuning the function of target pro-
teins. Green fluorescent protein (GFP) is a 𝛽-barrel protein with
a chromophore center that fluoresces upon photonic excitation.
The formation of an internal chromophore without external co-
factors makes it an ideal fluorescent marker in a variety of sce-
narios, including labels for protein expression and localization,
biosensors or cell markers, and indicators of protein–protein in-
teractions and promoter activity.[17] Enhancing the fluorescence
intensity of GFP can increase the sensitivity, imaging resolution,
and signal-to-noise ratio of the marker, thus further improving
its utility.
Here we present PRO-LDM (protein sequence generation with

conditional latent diffusion models), a multi-task modular learn-
ing framework that integrates a diffusion module in the latent
space to achieve both design fidelity and model efficiency. PRO-
LDM is capable of extracting biological representations at both
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single amino acid and full sequence levels, as demonstrated by
latent space visualization. Latent variable distributions are cap-
tured to generate meaningful embeddings for unconditional de-
sign of new sequences with native-like properties and increased
diversity. Global amino acid relationships are also reproduced.
Conditional design produces new proteins within target fitness
ranges, suitable for property and functional tuning. By adjusting
the hyperparameter of classifier-free guidance, PRO-LDMcan de-
sign outlier datapoints corresponding to species with properties
and functions beyond those of natural proteins. We have demon-
strated this approach by designing new GFP proteins with im-
proved fluorescence, solubility, as well as chemical and thermal
stabilities under a variety of working conditions, which further
validated the efficacy of our algorithm.
The modular architecture of PRO-LDM allows the integra-

tion of alternative pre-trained models for improved scalability
and adaptivity, as demonstrated by replacing the encoder with
ESM2(8M). Faster learning convergence andmore discrete latent
space mapping were achieved for the GFP task, while the gener-
ation of foldable sequences not associated with specific protein
families was also achieved by training withmore diverse datasets,
such as CATH or Swissprot, to achieve dataset-dependent de novo
protein design. With advantages over single-task algorithms in
terms of reduced computational time and more effective perfor-
mance, PRO-LDM represents a modular, combinatorial new tool
for efficiently extracting biological information from sequences
and designing new proteins with distinct structures or target fea-
tures that can be used in real-world applications.

2. Results

2.1. The architecture of PRO-LDM

PRO-LDM is based on a jointly trained autoencoder (JT-AE) with
a conditional latent diffusion module to learn fundamental pat-
terns embedded in protein sequences (Figure 1). The model per-
forms both unconditional and conditional protein sequence de-
sign with increased diversity. A fitness label is assigned to denote
a particular property or function in a given set of proteins. When
trained on sequence datasets with label values, PRO-LDM can
conditionally generate proteins toward a target label and predict
their fitness simultaneously. When unlabeled datasets are used,
or labels are uniformly set to 0, PRO-LDM performs unsuper-
vised learning to unconditionally generate proteins similar to the
training sets.

2.1.1. JT-AE

JT-AE is the fundamental structure of ReLSO[18] and a combina-
tion of supervised and unsupervised learning in an autoencoder
framework. It consists of a transformer-based encoder, a convo-
lutional neural network (CNN)-based decoder, and a multilayer
perceptron (MLP)-based regressor in parallel. The output of the
encoder is subjected to dimension reduction by a bottleneckmod-
ule composed of fully connected layers, to project each sequence
into a latent variable z. The collection of all z values constitutes
the latent space. The latent variable z, together with the labels
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Figure 1. Overview of the PRO-LDM architecture. A) In the training stage, input sequences are mapped into the latent space via a transformer-based
encoder. A latent diffusion model is applied to capture the distribution of the latent space. The latent variables are then used to reconstruct the sequence
via a CNN-based decoder and simultaneously predict the fitness via anMLP-based regressor. In the sampling stage, the latent variables of new sequences
are generated via the denoising process of LDM starting from a simple noise distribution. The output sequences and predicted fitness are obtained using
the decoder and regressor, respectively. B) 3D-structure iterations of a generated GFP during the denoising process colored to the pLDDT value (deep
blue: pLDDT > 90; light blue: 90 > pLDDT > 70; yellow: 70 > pLDDT > 50; orange: pLDDT < 50). We select several time intervals in the denoising
process trained on the GFP dataset and decode the latent variables into sequences. AlphaFold2 is used to predict the 3D structures.

representing sequence fitness, are simultaneously passed to the
diffusion module to simulate the distribution in the latent space,
as described below.

2.1.2. Conditional Latent Diffusion Model

Although capable of generating high-fidelity data with different
distributions, diffusion models are computationally expensive
since the sampling process often requires thousands of network
evaluations when applied directly at large spatial and temporal
scales.[19] To overcome this problem, our model adopts the diffu-
sion process in the latent space to reduce the dimensionality of
the input data, unlike other models that use diffusion all through
the whole process. LDM learns the sequence data distribution
in the latent space and captures its characteristics with different
fitness. It employs a UNet as the neural network backbone and
utilizes ancestral sampling for the generation process, such as
denoising diffusion probabilistic models (DDPM).[20]

During the training phase, given an input sequence x, the en-
coder f𝜃 encodes x into a latent representation z = f𝜃 (x), and the
decoder g𝜃 reconstructs the sequence from the latent variable z,
giving x̃ = g𝜃 (z) = g𝜃 (f𝜃(x)). In the latent space, we divide the dif-
fusion process into T steps and add Gaussian noise according to
a variance schedule 𝛽1,… , 𝛽T :

q
(
z1:T |z0) =

T∏
t=1

q
(
zt|zt−1) , q (zt|zt−1)

= N
(
zt−1;

√
1 − 𝛽tzt−1, 𝛽tI

)
(1)

where z0 ∼ p(z0). The reverse process could be defined as a
Markov chain, starting at p𝜃 (zT ) =  (0, I):

p𝜃
(
z0:T

)
= p

(
zT
) T∏

t=1
p𝜃

(
zt−1|zt) , p𝜃 (zt−1|zt)

= N

(
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(
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)
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∑
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(
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))
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𝛽 t is kept constant as a hyperparameter, where 𝛼t = 1 − 𝛽t, 𝛼̄t =
T∏
s=1

𝛼s,
∑

𝜃
(zt, t) = 𝜎2t I, and 𝜎2t = 𝛽t =

1−𝛼̄t−1
1−𝛼̄t

𝛽t. Consequently, we

sample zt−1 ∼ p𝜃(zt−1|zt) using the following equation:
zt−1 =

1√
𝛼t

(
zt −

𝛽t√
1−𝛼̄t

𝜀𝜃
(
zt, t

))
+ 𝜎t𝛾 , 𝛾 ∼ N (0, 1) (3)

where 𝜖𝜃 is a function approximator designed to predict 𝜖 from
zt. In the case of conditional sampling, the latent variable z is
drawn along with class label c, so that the function approximator
is changed to 𝜖𝜃(zt, t, c). We jointly train an unconditional diffu-
sionmodel p𝜃(z) parameterized through a function approximator
𝜖𝜃(zt, t), along with the conditional model p𝜃(z|c) parameterized
through 𝜖𝜃(zt, t, c). During training, with a probability puncond, the
condition c is replaced with the unconditional class identifier ∅,
enabling the model to learn both conditional and unconditional
denoising within a single unified framework.[21] The model then
perform sampling using the following linear combination of the
conditional and unconditional score estimate:

𝜀̃𝜃
(
zt, t, c

)
= (1 + 𝜔) 𝜀𝜃

(
zt, t, c

)
− 𝜔𝜀𝜃

(
zt, t

)
(4)
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where 𝜔 is a hyperparameter controlling the strength of the
classifier-free guidance. Consequently, we train the latent diffu-
sion model using the following equation:

LLDM = 𝔼𝜀(x), c, 𝜀∼ (0, 1), t

[‖‖‖𝜀 − 𝜀̃𝜃
(
zt, t, c

)‖‖‖22
]

(5)

This architecture can accelerate sequence generation speed
and improvemodel efficiency. Moreover, we circumvent the need
for classifier-guided diffusion, which requires an additional pre-
trained classifier that may further increase model complexity. In-
stead, our classifier-free guided diffusion combines conditional
and unconditional diffusions for joint training, striking a bal-
ance between model complexity and computational costs, with-
out reducing the quality in sequence generation, which exhibits
notably superior efficiency compared to both ReLSO and other
SOTA models (Table S1, Supporting Information).
The model is trained by minimizing the loss below:

L = ‖‖‖g𝜃 (f𝜃 (x)) − x‖‖‖ + ‖‖‖h𝜃 (f𝜃 (x)) − y‖‖‖
+𝔼𝜀(x), c, 𝜀∼ (0, 1), t

[‖‖‖𝜀 − 𝜀̃𝜃
(
zt, t, c

)‖‖‖22
]

(6)

The first and second terms gauge the loss of JT-AE, where f𝜃
represents the encoder, g𝜃 represents the decoder, h𝜃 represents
the regressor, x is the input sequence and y is the corresponding
fitness. The third term measures the loss of the latent diffusion
model which is described above in detail.

2.2. PRO-LDM Learns Representations of Protein Sequences

Our model was first trained unconditionally on protein datasets
without fitness values, to evaluate the capture of inherent prop-
erty or function representations in sequences. PRO-LDM was
able to design new protein variants by learning information em-
bedded solely in sequences. The model was trained on each of
three datasets, including two datasets on homologs of bacterial
luciferase obtained from InterPro (IPR011251), and one dataset
on a family of bacterial MDH enzymes (EC1.1.1.37). The lu-
ciferase datasets were used in two different forms, namely, Lu-
ciferase_MSA and Luciferase_RAW, to determine how multiple
sequence alignment (MSA) affected the model’s learning effi-
ciency and generative performance.
The propensity and distribution of 20 amino acids in a given

sequence define the structure and function of proteins. It is there-
fore essential for a learning algorithm to capture the intricate
biochemical attributes of amino acids. Amino acids with similar
side-chain structures and physicochemical properties are likely
to be more correlated during the learning process than those that
are not. An example of this is shown in Figure S1 and Table S2
(Supporting Information) by extracting amino acid embeddings
in randomly selected sequences. Analysis on whole datasets was
processed using the Principal Component Analysis (PCA) di-
mension reduction algorithm to visualize in the 2D space (Figure
2A), where amino acids more similar are positioned closer to-
gether, such as charged acidic and basic amino acids. In contrast,
amino acids with different biochemical properties are spaced fur-

ther apart, such as non-polar and polar amino acids. The re-
sults indicated that our model was able to learn characteristics
of amino acids solely from their appearances in sequences.
Using the luciferase dataset as an example, we evaluated the

efficiency of our model in learning comprehensive representa-
tions of protein sequences. Luciferase proteins were classified
into different subfamilies based on their fold, the information
of which was extracted from InterPro, and nine largest subfam-
ilies were used for analysis. Sequence embeddings and family
information were visualized in Figure 2B, where results for both
Luciferase_MSA and Luciferase_RAW are shown. Apparent clus-
tering is observed for sequences belonging to the same subfamily
in both training sets. The results clearly showed that our model
captured not only characteristics of amino acids from their posi-
tional appearance within sequences, but also grasped attributes
at full protein level in terms of properties and functions, which
are prerequisites for subsequent design tasks.
Nine deep mutation scanning (DMS) datasets were used

to train PRO-LDM. These datasets contain mutant sequences
with equal or unequal lengths, as well as both indels (inser-
tions/deletions) and amino acid substitutions (Experimental Sec-
tion; Table S3, Supporting Information). Dimension reduction
of sequence embeddings was performed by PCA in 2D space,
with fitness values represented by different colors. As shown in
Figure 2C, latent space visualizations of most datasets exhibit a
global organization of fitness, providing the basis for subsequent
conditional protein design. PRO-LDM also showed comparable
accuracy in protein fitness prediction as JT-AE in all nine datasets
(Table S4).

2.3. PRO-LDM Unconditionally Designs Sequences Resembling
Natural Proteins

The core objective of a generative model is to produce new data
with a similar distribution to the original data. PRO-LDMwas de-
signed to perform this task in the absence of a fitness label. The
performance of PRO-LDM has also been compared to VAE (vari-
ational autoencoder) based models, as they are notable for the
ability to capture embedded information that distinguishes pro-
tein sequences and generate native-like sequences in the target
latent space.[22]

The progress of training was monitored by comparing the
identity between generated and natural sequences through cal-
culating the proportions of identical residues in both sets. Sixty-
four sequences were generated in every 50 epochs. The identity
between generated and natural sequences were observed to in-
crease along with training steps (Figure 3A, left). For the MDH
dataset, PRO-LDM resulted in highermedian identities thanVAE
at the same epochs and achieved a higher level of convergence
(Figure 3A, top left vs. right). For the luciferase_MSA dataset, the
identity of PRO-LDM was lower than VAE in the first 50 epochs,
but reached a higher final convergence level (Figure 3A, middle
left vs. right). For the luciferase_RAW dataset, the VAE model
showed poor performance with a consistently low level of identi-
fication (the highest value was less than 40%). In contrast, PRO-
LDM achieved a final identity of 90% or higher, showing signif-
icantly improved learning capability (Figure 3A, bottom left vs.
right). Comparing two luciferase datasets, we found that train-
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Figure 2. Protein representations at amino acid and sequence levels. A) Average latent space representations of amino acid characteristics learned
by PRO-LDM. (dataset from left to right: Luciferase_MSA, Luciferase_RAW, MDH) B) Organization of latent space reflecting subfamilies of Luciferase.
Visualizations illustrate the latent representation of sequences in Luciferase_MSA (top) and Luciferase_RAW (bottom), project into the first two principal
components and are colored by sub-family annotations derived from InterPro. Only sequences belonging to the nine largest subfamilies are shown. C)
Latent space representations of labeled protein sequences. The latent embeddings of nine labeled datasets learned by PRO-LDM are displayed. The
protein sequence representations are visualized by PCA, and each point is colored according to its corresponding fitness value. From blue to orange:
high fitness to low fitness.

ing PRO-LDM with MSA data led to faster convergence and gen-
erated sequences more similar to natural proteins. Thus, inte-
grating evolutionary information during training can further en-
hance the learning efficiency of the algorithm.
Amino acid conservations in proteins are associated with crit-

ical structural and functional motifs due to nature’s selection
process.[23,24] Such positional variability in sequences can be de-
termined by calculating the Shannon entropy, for each site in
the MSAs of generated and training sets.[25,26] Sequences gen-

erated by PRO-LDM exhibited highly similar Shannon entropy
profiles compared to those in the training sets (Figure 3B; Figure
S2 and Table S5, Supporting Information), indicating that crit-
ical residue positions and evolutionary conservation patterns
from natural sequences were reproduced. In the MDH dataset,
PRO-LDM demonstrated remarkably superior performance over
comparisons, which reduced the positional mean entropy error
(m.s.e.) of VAE and JT-AE generated sequences by ≈11.2- and
≈13.7-fold, respectively. In two luciferase datasets, the positional

Adv. Sci. 2025, e02723 e02723 (5 of 18) © 2025 The Author(s). Advanced Science published by Wiley-VCH GmbH
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Figure 3. Unconditional protein design by PRO-LDM. A) Sequence identity of generated sequences to the nearest natural sequence from training data
at different iterations. X axis: training epoch; Y axis: sequence identity between generated sequence and best-matching sequence in training set. B)
Positional variability of PRO-LDM or VAE generated sequences (orange) versus natural sequences (blue). X axis: amino acid position; Y axis: Shannon
entropy. C) A sequence logo figure of key conserved function-related positions in the MSA of MDH datasets (top: generated sequences; bottom: training
sequences). D) Comparison of sequence diversity for natural and generated sequences in three datasets (top: MDH; mid: Luciferase_MSA; down:
Luciferase_RAW; blue: PRO-LDM generated sequences; orange: VAE generated sequences; green: training sequences).

variabilities for PRO-LDM generated sequences and natural se-
quences exhibited a high degree of similarity (with an overall cor-
relation coefficient greater than 0.76), and the m.s.e. was slightly
superior to that of the VAE and JT-AE models (Figure 3B; Figure
S2 and Table S5, Supporting Information). In addition, the high
similarity of Shannon entropy between generated and natural
proteins in MDH and luciferase_RAW inferred the capture of in-
trinsic evolutionary patterns even without information from se-
quence alignments.
Enzymes in the MDH dataset need to bind both the substrate

and NAD+ cofactor to carry out catalytic functions. Therefore,

we predicted functional sites of generated sequences using In-
terPro and marked them in the logo figure. Highly similar and
conserved patterns were observed for the predicted amino acid
occupations at respective positions between the training and gen-
erated sets (Figure 3C). Together with Shannon entropy profiles,
these results demonstrated that PRO-LDM was able to identify
and utilize key evolutionary information in proteins to design
new sequences resembling natural specieswith key positions and
residues retained, in terms of protein scaffold and function.
Both amino acid composition and 3-D conformation con-

tribute to the functionality of proteins. Key residues responsi-

Adv. Sci. 2025, e02723 e02723 (6 of 18) © 2025 The Author(s). Advanced Science published by Wiley-VCH GmbH
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ble for the same function might be spatially adjacent in the
folded protein, but being far apart in the primary sequence.
Since the sequence-based model has linear inputs, we won-
dered whether the global relationship in distant residue pairs
could be grasped by our algorithm. Frequency distributions
were calculated for each amino acid pair at all positions across
sequences within MSAs. The correlation of frequency distri-
butions was determined in both training and generated sets.
PRO-LDM showed very similar pairwise relationships to natu-
ral sets (Figure S3, Supporting Information) and outperformed
the VAE model with higher average correlations (Table S6, Sup-
porting Information).We also investigated whether generated se-
quences retained key functional domains reported in previous
studies. Ten sequences from the generated set of MDH were
randomly selected and examined for the presence of two key
domains (“Ldh_1_N”and “Ldh_1_C”) as in the Pfam database,
each containing more than 100 amino acids and were far apart
from each other in the primary sequence.[27] Both domains ap-
peared in 9 out of 10 sequences, and only the “Ldh_1_C” do-
main appeared in the sequence “random_generated_4.” The
results suggest that PRO-LDM can design new variants pre-
serving long-distance amino acid relationships and key func-
tional domains as in natural proteins (Figure S4, Supporting
Information).
Across three datasets tested above, the diversity of sequences

generated by PRO-LDM significantly exceeded that of both VAE
generated and natural sets at the same level of sequence iden-
tity within the cluster (Figure 3D). For instance, in the case of
MDH design, the diversity of PRO-LDM designed sequences ex-
ceeded that of the VAE model and natural data by up to two-
fold at 85% identity. We then assessed the in vivo stability of de-
signed proteins using the sequence order of amino acids, esti-
mated by the biopython instability index, where a value below 40
indicates high stability.[28] The stability of PRO-LDM-generated
sequences was found to be similar to training sets for MDH and
Luciferase_MSA (Figure S5, Supporting Information) with insta-
bility index universally lower than 40. Yet generated sequences
were less stable than the natural set in luciferase_RAW, which
may be attributed to a higher sequence diversity and length va-
riety. Finally, we compared distributions of amino acid types for
generated and natural sequences (Figure S6, Supporting Infor-
mation), which showed high agreements in all three datasets.
Herein, we demonstrated that PRO-LDM can unconditionally de-
sign protein sequences with higher diversity than the training
datasets, whilemaintaining the stability, evolutionary and physic-
ochemical characteristics that define proteins’ native structures
and functions.
To compare the performance of PRO-LDM with alternative

diffusion-based models, we benchmarked it against EvoDiff. The
model captures evolutionary patterns in sequences by condition-
ing on MSA data of related proteins, which can be used to guide
the design process, such as generating a query sequence har-
boring embedded features of the dataset.[13] Here we compare
PRO-LDM’s performance in designing a foldable protein with
MSA information. Using the luciferase-MSA dataset, PRO-LDM
was trained to generate 1 000 new sequences. For EvoDiff, we
first utilized the model with pretrained checkpoint to generate
query sequences conditioned on 64 MSA sequences, using ei-
ther maximum or random subsampling. Moreover, we also fine-

tuned and trained EvoDiff from scratch on the Luciferase_MSA
dataset, followed by unconditional sequence generation. Two se-
quences with highest pLDDT from EvoDiff were compared with
the three longest sequences with fewest padding characters gen-
erated by PRO-LDM. Structures predicted by AlphaFold3 are
shown in Figure S7 (Supporting Information). Sequences gen-
erated by PRO-LDM showed significantly better foldability, as
indicated by higher pLDDT (per-residue Local Distance Differ-
ence Test), compared to those generated by EvoDiff, demon-
strating the usability of our model for MSA-based unconditional
design.
The modularity of the PRO-LDM framework was further

demonstrated by creating a PRO-LDM(ESM2) version model
through replacing our original encoder with that in ESM2, which
carried transferable weights from pre-training on the UniProt
database that can enhance the model’s generalization capability.
Suchmodularitymakes PRO-LDMmore robust in feature extrac-
tion and precision protein design, especially when pre-trained on
a universal dataset with sequence and structure diversity. PRO-
LDM(ESM2) was trained on either Swissprot or CATH datasets.
The former features expert-curated functional proteins in nature
while the latter is a dataset based on protein structure classifi-
cation. The trained model then generated de novo sequences not
associated with specific protein families. AlphaFold3 predicted
structures revealed decent foldability and primarily component
of either 𝛽-sheets (i) or 𝛼-helices (ii-iv) (Figure S8A, Supporting
Information).

2.4. PRO-LDM Designs New Proteins with Tailored Functional
Properties

Despite indispensable roles in living organisms, the use of nat-
ural proteins ex vivo in therapeutic and biomedical applica-
tions are often limited by their natural properties or functional
performances.[29] Tuning native proteins on stability, solubility or
enzymic activities are important aspects of protein engineering
with enormous practical potential[29,30] We then exploredwhether
datasets with fitness labels and conditional diffusion module
could enable PRO-LDM to design new protein variants with tai-
lored properties or functions.
In our case, designing proteins with superior performance can

be achieved by generating sequences with higher fitness values.
The process was monitored by plotting changes in the sequence
fitness over iterations. Across all nine labeled datasets, the se-
quence fitness progressively approached the target fitness values
and converged through the denoising process (Figure 4A; Figure
S9, Supporting Information). This observation reflects the sam-
pling principle of the diffusion model, which initiates random
Gaussian noises and then gradually removes them until a target
distribution is achieved (Figure 1).
Protein variants with different levels of a specific property were

obtained by altering the input labels. When the label was set
to 0, new sequences were unconditionally generated with a dis-
tribution resembling the training set in the visualization of la-
tent vectors, similar to designs from unlabeled datasets in the
previous section. When a value was assigned to the label, gen-
erated sequences showed clear alignment in their latent vector
distribution against those with the same label in the training set
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Figure 4. Conditional protein design by PRO-LDM. A) The change of GFP predicted fitness in conditional protein sequence generation. To visualize
the convergence of protein fitness into the targeted area, high-fitness protein sequences are conditionally generated. The protein fitness is predicted
using latent variables generated during the denoising process, utilizing the pre-trained regressor. Sixty-four protein sequences are generated for each
dataset. The intermediate dark blue line represents the average fitness value. X axis: time step; Y axis: fitness. B) Natural sequences of the GFP dataset
and conditionally generated protein sequences visualized in the latent space. The sequences in the GFP dataset are divided into eight labels based
on their fitness, and new sequences are conditionally generated for each label. The generated (red) and natural sequences (cool-color: higher fitness;
warm-color: lower fitness) of each label are mapped into the latent space and visualized using PCA. C) Fitness distribution of natural and generated
sequences for GFP dataset in each label. Sixty-four sequences of the GFP dataset are generated for each label, and their fitness is predicted using the
regressor. The fitness distributions of generated sequences (red) are compared to that of natural sequences (blue). X axis: label; Y axis: fitness. D,E)
PRO-LDM (D) and ProteinBERT (E) predicted fitness comparison of generated sequences. Sixty-four GFP sequences are generated from each model
for comparison. X axis: model name; Y axis: predicted fitness. Model architecture for X axis: i) PRO-LDM; ii) ProteinMPNN; iii) EvoDiff-oadm-38 M
(training from scratch); iv) EvoDiff-oadm-38 M (finetuning); v) EvoDiff-D3PM-BLOSUM-38 M (training from scratch); vi) EvoDiff-D3PM-BLOSUM-38
M (finetuning); vii) EvoDiff-D3PM-uniform-38 M (training from scratch); viii) EvoDiff-D3PM-uniform-38 M (finetuning).

(Figure 4B, Figures S10–S17). The fitness values predicted by the
regressor for generated sequences varied along with input labels
and exhibited similarity to corresponding sequences in the train-
ing data (Figure 4C; Figure S18, Supporting Information), sug-
gesting that PRO-LDM was able to design new variants with tai-
lored properties or functional performance. The latent diffusion
module refined the controllability on such fitness tuning, where
the ReLSO architecture without diffusion generated undesired
low fitness outlier sequences with notable functional discrepan-
cies (Figures S19 and Figure S20, Supporting Information). A
thorough discussion on performance comparison between PRO-
LDM and ReLSO without the latent diffusion is included in the
supplement materials.
The generation capability of PRO-LDM for functional proteins

was benchmarked with SOTA models, including ProteinMPNN,
EvoDiff, ESM3 and ProGen2, in the GFP design case, given the

high quality of this dataset and its widespread use for model vali-
dation in various works.[31–35] For EvoDiff, the model was trained
either from scratch or fine-tuned with the dataset. For Protein-
MPNN and ESM3, pro_H variant with the highest fitness in the
dataset was inputted as the initial structure for sequence decod-
ing. For ProGen2, themodel was also fine-tuned with the dataset.
To evaluate the similarity of amino acid distributions in generated
and training protein sequences, we calculated the Reconstruction
KL (Recon KL) for 1000 generated sequences against 1000 ran-
domly selected test sequences.[13] PRO-LDM exhibited a signifi-
cantly lower Recon KL compared to all models except ProGen2,
indicating a closer resemblance to natural amino acid distribu-
tions. The minimumHamming distance between generated and
natural sets was calculated to assess the sequence diversity, where
PRO-LDM designed sequences showed lowest value (Table S7,
Supporting Information).
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 21983844, 0, D
ow

nloaded from
 https://advanced.onlinelibrary.w

iley.com
/doi/10.1002/advs.202502723, W

iley O
nline L

ibrary on [04/08/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advancedscience.com


www.advancedsciencenews.com www.advancedscience.com

In silico verification of generated GFP sequences was con-
ducted from both structural and functional aspects. Both PRO-
LDM regressor and ProteinBERT were used to predict se-
quence fitness values, where proteins designed by PRO-LDM
exhibited higher functional predictions on both platforms com-
pared to other models, suggesting better targeted optimization
(Figure 4D,E; Figure S21, Supporting Information). The fold-
ability of generated sequences was evaluated through struc-
ture prediction with Alphafold3 and reported by the aver-
age pLDDT. Except for EvoDiff-oadm-38 M (from scratch),
designed sequences achieved average pLDDT scores exceed-
ing 90, indicating reasonable foldability (Table S7, Supporting
Information).
The benefit of model modularity was further evaluated by

training GFP datasets with PRO-LDM(ESM2). The model with
a pre-trained ESM2 encoder exhibited faster convergence during
training and achieved comparable final performance in loss and
sequence reconstruction accuracy to the original model (Figure
S8B, Supporting Information), indicating a more robust fea-
ture extraction capability that integrates effectively with PRO-
LDM architecture. Dimensionality reduction to visualize pro-
tein sequences in relation with functions revealed higher map-
ping accuracy and datapoint separation to their labels (Figure
S8C, Supporting Information). The generalization capability of
PRO-LDM(ESM2) in downstream tasks was verified by higher
Pearson and Spearman correlations, as well as lower m.s.e. and
L1 error of the regressor during training, indicating a stronger
fitness prediction capability for PRO-LDM(ESM2) (Figure S8D,
Supporting Information). Such modularity endows our archi-
tecture with more flexibility for feature extraction and preci-
sion protein design in alternative use cases. Building on these
results, one can perform conditional generation within a well-
structured latent space by leveraging a pretrained encoder and
decoder with fixed parameters, as demonstrated by PLAID.[36]

The impact of using diffusion module based on the fixed, pre-
trained protein language model encoders was then evaluated.
We employed ESM2 (8 M, 150 M, 3B) and ESM C (300 and
600 M) as encoders to visualize the latent representations of
both training and generated data via dimensionality reduction,
in order to compare diffusion behaviors across different latent
spaces. Considering that latent vectors of different dimensions
retain varying levels of sequence information, we also investi-
gated the impact from latent dimensionality on the diffusion-
based generation process. For ESM C, increasing the parame-
ter size from 300 to 600 M did not result in noticeable differ-
ences in the 2D distribution of latent variables. However, increas-
ing the latent dimensionality led to earlier convergence, greater
concentration of fitness among generated sequences, but also
higher sequence redundancy (Figure S22A–F, Supporting In-
formation). For ESM2, larger encoder sizes and latent dimen-
sions both resulted in more dispersed latent distributions in
2D space. Generated sequences resided more concentrated in
high-fitness regions with increased redundancy (Figure S22G–K,
Supporting Information). However, compared to models with
frozen encoder weights, jointly training the encoder with the dif-
fusion model yielded clearer mappings between latent variables
and protein functions, which is more suitable for the GFP opti-
mization task we conducted (Figure S22L, Supporting Informa-
tion).

2.5. Outlier Design by Adjusting Classifier-Free Guidance

Beyond generating new proteins in-distribution with those from
training sets, we also attempted to design significantly different
variants by sampling outlier datapoints in the latent space. This
methodwas used in out-of-distribution image generation and im-
proved the generalization performance of ID tasks.[37] New small
molecules with enhanced properties in multiple domains were
also designed using an out-of-distribution controlled diffusion
model.[38] We referred to the classifier-free diffusion guidance in
image generation and outlier sampling to elucidate the relation
and boundary between sample diversity and fitness distribution
in the directed-generation task. The method was then demon-
strated on the optimization of GFP for enhanced fluorescent in-
tensity due to its relevance in biological applications such as live
cell imaging.
In classifier-free diffusion guidance, the sampling process is a

linear combination of conditional and unconditional scores, as
shown by Equation 4.[21] The guidance strength is defined by
a hyperparameter 𝜔, which consequently controls the diversity
and fidelity of generated samples.[21] We herein evaluated the im-
pact of 𝜔 on generated samples in the range between 0.1–1000.
Our algorithm was benchmarked with SOTA models by cross-
referencing fitness prediction results on generated sequences
with ProteinBERT[39] (a self-supervised deep learning language
model for protein sequences), and Tranception[40] (a transformer-
based fitness prediction model leveraging autoregressive predic-
tions and retrieval of homologous sequences at inference).
Decreasing the strength of classifier-free guidance in diffusion

model within a certain range can enhance the diversity of gen-
erated data but tended to decrease fidelity.[21] In our case, when
𝜔 was set between 0.1 and 1.0, designed proteins all properly
folded according to AlphaFold2 predictions (Figure 5A; Figures
S23A and S24A, Supporting Information). Decreasing𝜔 resulted
in gradually increasing sequence diversity (Table S8), accompa-
nied by convergence of predicted fitness toward the targeted value
(Figure 5D; Figures S23,S24,S25, Supporting Information). De-
signs with precise fitness values can be obtained when 𝜔 was
set in this range, with minor enhancement on design diversity
at lower 𝜔 values.
In contrast, when 𝜔 was set above 1.0, the diversity of gen-

erated sequences increased with the 𝜔 value. Datapoints repre-
senting generated sequences gradually moved beyond the distri-
bution of the training set (Figures S26D,S27D, Supporting In-
formation), leading to a significant increase in sequence diver-
sity (Table S8; Figures S26C and S27C, Supporting Information),
albeit with a decrease in predicted fitness (Figures S26E–G and
Figure S27E–G, Supporting Information). Alphafold2 was em-
ployed to predict structures for 100 randomly selected sequences
out of 1000 total samples. The average pLDDT was 96.09 at 𝜔
= 20 (Figure S27C, Supporting Information), while 87 of 90
proteins had r.m.s.d. (root-mean-square deviation) ≤1Å against
pro_H, suggesting high conformational agreement between gen-
erated and training sequences despite of notably increased di-
versity. Our random selection has assigned pro_H to the test
set, but it has a higher fluorescent intensity compared to best-
performing protein in the training set (calculated fluorescence:
13182 vs 12882). Herein, pro_H was selected as the control for
subsequent experimental tests of designed protein variants.
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Figure 5. Outlier protein design by PRO-LDM at 𝜔 = 1 and 𝜔 = 20 for GFP. A) Characteristic structure for designed GFP protein predicted by AlphaFold2
and colored to pLDDT at 𝜔 = 1. B) The number of mutation sites for 5000 generated sequences. X axis: number of mutation sites; Y axis: the frequency
of occurrence. C) Statistical data of 5000 generated sequences at 𝜔 = 1. One hundred sequences are randomly selected to calculate the average pLDDT
and r.m.s.d. compared with the protein with highest fitness in the training set (pro_H). D) Visualization of the latent space. The generated (red) and
natural sequences (cool-color: higher fitness; warm-color: lower fitness) of each label are mapped into latent space and visualized by PCA. E) Histogram
of mutation site counts for GFP training set and generated outlier samples when at 𝜔 = 20. X axis: number of mutation sites; Y axis: relative number
of sequences (blue: training set; purple: generated set). F,G) Statistical data of pro_1498 and pro_2421 against pro_H. H) Visualization of the latent
space for training set and the generated outlier sequences at 𝜔 = 20 (green star: pro_1498, purple star: pro_2421). I–O) Superimpositions of Alphafold2
predicted structures. I–K): local visualization of three key residues composing chromophore between wt-GFP and I: pro_H, J: pro_1498, and K: pro_2421.
L,M): Superimposition of pro_H with pro_1498 (L) and pro_2421 (M). N,O): Local visualization of three key residues composing the chromophore of
pro_H against (N): pro_1498, and (O): pro_2421.
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Figure 6. Experimental verification of PRO-LDM designed GFP variants. A) Culture tubes of Rosetta (DE3) expressing four types of GFP under 480
nm LED without emission filters (left to right: wt-GFP; pro_H; pro_1498; pro_2421). Bacterial cultures are adjusted to display almost identical optical
density (OD600) by spectrophotometer. B) Fluorescence intensity of GFP variants as a function of concentration in bacterial culture (485 nm excitation
filter and 520 nm emission filter). C) Fluorescence spectra of the four GFP variants. D) GFP against RFP fluorescence intensities in bacterial cultures
from four variants (GFP: 395 nm excitation filter and 509 nm emission filter; RFP: 588 nm excitation filter and 633 nm emission filter). E) The box plot
of green-to-red fluorescence intensities calculated from three repeat experiments (GFP: 395 nm excitation filter and 509 nm emission filter; RFP: 588
nm excitation filter and 633 nm emission filter). F) Western blot band for GFP-RFP fusion proteins. G) The thermal stability of four GFP variants as
determined by percentage fluorescence retained. H) The chemical stability of four GFP variants as determined by percentage fluorescence retained.

When 𝜔 exceeds 20, PRO-LDM is capable of generating
increasingly diverse variants, with relative sequence identities
against wild-type GFP falling below 50% (Figure S28, Supporting
Information). Variants with 50 to 120 mutations were subjected
to structural prediction usingAlphaFold3, with several sequences
exhibiting pLDDT above 70, and the highest variant reaching
85.90 (Figure S29). In addition, when using the model trained on

CATH dataset to generate sequences with the guidance scale 𝜔

= 20, the minimumHamming distance between 1000 generated
sequences and the training dataset was 0.87 ± 0.017, which is
higher than 0.83 reported by EvoDiff. These findings suggest that
PRO-LDM is capable of sampling vastly different sequence space
even given a highly similar training sequence set, that can gen-
erate low-similarity and structurally plausible variants, reflecting
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its broad generalization capability. However, under the circum-
stance of GFP design, most generated datapoints with low se-
quence identitymigrated toward areas closer to low fitness region
in latent space, with a substantial decrease in predicted fitness by
both ProteinBERT and Tranception (Figure S30, Supporting In-
formation). In our case, decreased fitness is not in favor of high
fluorescence in GFP and thus was not pursued further, although
whichmight be relevant in alternative property tuning tasks such
as decreasing the solubility for proteins self-assembly.[41] When
𝜔was set at 1000, generated sequences exhibited aberrant confor-
mations away from the native protein and low stability, resulting
in a significant decline in pLDDT scores (< 50) (Figure S31, Sup-
porting Information).

2.6. PRO-LDM Optimizes GFP Variant with Enhanced
Fluorescent Intensity

PRO-LDM regressor, ProteinBERT and Tranception predicted
notably different fitness distributions for generated sequences,
especially at high 𝜔 values (Figures S26E–G, S27E–G, and
S30E–G, Supporting Information). The difference can be at-
tributed to the training process, whereas PRO-LDM was trained
on DMS data; Tranception was pre-trained on UniRef100; and
ProteinBERT was first pre-trained on UniRef90 and finetuned
using the DMS dataset. We considered predictions from all three
models when screening sequences for subsequent experimen-
tal characterizations. Sequences generated at 𝜔 = 20 were se-
lected due to their balance between diversity and fidelity in this
setting. Outlier sequences with high fitness (label 7 and 8 pre-
dicted by our regressor) were screened according to their distri-
bution against the training set in latent space, resulting in 180
datapoints (Figure. 5H, red dots). Figure 5E shows the number
of mutations in outlier sequences in comparison to the training
set, in which 168 out of 180 sequences had r.m.s.d. < 2 Å against
pro_H (Table S9, Supporting Information). Two highest-rated se-
quences, namely pro_1498 and pro_2421, predicted by Protein-
BERT and Tranception were selected, both of which had r.m.s.d.
< 1 Å and 8 mutations compared to pro_H, as well as 6 muta-
tions against wt-GFP. The minimummutation number between
the designed sequences and their most similar proteins in the
training set is 3 and 4, respectively (Table S10, Supporting In-
formation). The sequences for all four tested variants are pro-
vided in Table S11 (Supporting Information). We also analyzed
the distribution of mutation sites andmutation frequency per se-
quence in the training set (Figure S32, Supporting Information),
which showed that mutations are broadly distributed and most
sequences contain fewer than ten mutations.
The fluorescence of GFP is influenced by the chromophore

and its surrounding structural environment.[42] Therefore, we
aligned predicted structures of pro_1498, pro_2421 and pro_H
against that of wt-GFP. Similar deviation angles were observed
between the phenyl rings of Y65 in pro_H, pro_1498, and
pro_2421 against the same residue in wt-GFP (Figure 5I–K). Fur-
ther superimposition between pro_1498 and pro_2421 against
pro_H showed highly similar side-chain alignments in their
chromophores (Figure 5L–O), which suggested a common con-
formation for higher fluorescence from both generated se-
quences and experimentally verified mutants as compared to wt-

GFP. A closer inspection of the chromophore center revealed hy-
drogen bonds between the hydroxyl group of Y65 and surround-
ing residues on the 𝛽-barrel (H147, T202), which is present in
wt-GFP but absent in pro_H, pro_1498, and pro_2421. Thismiss-
ing interaction may account for reduced structural rigidity and
fewer constraints on conformational changes associated with flu-
orescence (Figure S33, Supporting Information). In the six mu-
tations from pro_1498 and pro_2421 to wild-type GFP, only L63
is adjacent to the chromophore and engages in the polar interac-
tion with V60, a residue involved in the chromophore’s hydrogen
bond network. The remaining mutations do not directly interact
with the chromophore but may play roles in the structural sup-
port for protein functions (Figure S34, Supporting Information).
The two designed variants pro_1498 and pro_2421, together

with wt-GFP and pro_H, were expressed in Rosetta (DE3) for ex-
perimental assessment. All four GFP variants readily exhibited
fluorescence in bacteria with pro_2421 showing highest bright-
ness at the same bacterial density (OD600= 1.0), under excitation
at 485 nm (Figure 6A). The fluorescent intensity of pro_2421 was
127.1-fold higher than that of wt-GFP, 58.7-fold higher than that
of pro_1498, and 2.1-fold higher than that of pro_H (Figure 6B).
Fluorescence spectrum scanning showed very similar profiles be-
tween wt-GFP and pro_1498, as well as pro_H and pro_2421, re-
spectively (Figure 6C). Maximum excitation wavelengths ranged
from 395 to 405 nm andmaximum emissionwavelengths ranged
from 505 to 515 nm, while pro_H and pro_2421 hadmore similar
excitation and emission wavelengths (Table 1).
Additional experiments to normalize GFP fluorescent inten-

sity against expression levels were carried out by fusing respec-
tive sequences tomKate2, a red fluorescent protein (RFP), using a
rigid 𝛼-helical linker, where green-to-red fluorescence ratios were
determined. Two excitation wavelengths were used, i.e. 395 and
480 nm. Whilst 395 nm was the commonly used excitation wave-
length for GFP performance evaluation, 480 nm was also widely
utilized during live cell imaging applications due to the minimal
cellular damage from visible light.[43] Pro_2421 outperformed all
other variants under 395 nm and showed slightly lower bright-
ness at 480 nm against pro_H, despite its higher absolute fluo-
rescent intensity in cell (Figure 6D,E and Table 1). The expression
levels of fusion proteins were also examined by western blot and
analyzed by ImageJ (Figure 6F). Interestingly, both pro_H and
pro_2421 had lower expressions as compared to wt-GFP in E. coli
despite their enhanced fluorescent intensities (Table 1).
GFP variants were subjected to his-tag purification for sub-

sequent characterization of extinction coefficient (EC), quantum
yield (QY), thermal stability and chemical stability (Figure 6G,H;
Table S12, Supporting Information). Pro_2421 exhibited highest
EC and QY amongst all four variants, showing higher molecular
brightness over both wt-GFP (1.66×) and pro_H (1.20×) (Table 1).
Although all variants reported similar pKa values, pro_2421 ex-
hibited superior tolerance in highly acidic condition, which still
retained 10% of its maximum fluorescence at pH 4.27 when
other proteins were fully denatured (Figure 6H). The variant
also sustained higher temperatures, while 50% of its maximum
fluorescence was retained after heating at 90 °C for 10 min
(Figure 6G). In contrast, the brightness of other proteins dropped
below 6% of their maximum. The enhanced performance of
pro_2421 was likely to be related to its higher solubility and struc-
tural stability, since all pro_2421 proteins were expressed in the
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soluble fraction ofE. coli, while other variants always showed frac-
tions misfolded into insoluble pellets (Figure S35). Our designed
variant pro_2421 has shown superior performance in multiple
domains, demonstrating the feasibility of the outlier-generating
approach for protein property or functional optimization.
Table. 1 summarizes recent reports on GFP optimization from

different groups.[32,44–52] Notable efforts from rational design,
computational guided design and directed evolution, random
mutagenesis and screening, and alternative deep learning based
methods were included. Outlier generation with PRO-LDM has
demonstrated a feasible pathway by optimizing fluorescent inten-
sity of the designed protein with a high increase ratio in multi-
ple practical working scenarios,[32,50,52] while simultaneously en-
hancing its biophysical properties including solubility, chemi-
cal, and thermal stability. Noteworthily, our method also per-
formed the task in a de novo design-based pathway by generating
the sequence through training data-guided denoising from ran-
dom noise with a Gaussian distribution, rather than through a
mutagenesis-based route which focused on residues in the chro-
mophore center (Figure S34, Supporting Information). This en-
abled to probemutation sites distributed at various locations both
proximal and distal to the chromophore, which again demon-
strated our claim that PRO-LDMwas able to grasp and reproduce
the global amino acid relationship in the earlier section. The ap-
proach enables more flexibility during design from both the re-
action center and their surrounding scaffold that synergistically
contribute to protein properties and functions, while showing
more efficiency over random metagenesis and screening.[32,47]

3. Conclusion

Our work introduces a deep-learning framework striking at the
sweet spot of design fidelity and computational efficiency by em-
ploying a diffusion module in the latent space. The model can
effectively grasp embedded information in amino acids from
their presence within protein sequences both locally and glob-
ally, to construct new proteins with enhanced diversity and tun-
able properties. Its modular architecture enables the reduction
of computational power required for completing various tasks,
without sacrificing the potential to integrate with pre-trained
large models. Diffusion model’s capability to add noise to the
input and reconstruct through denoising further improves the
resilience and versatility of the encoder in the algorithm, produc-
ing diverse samples in an efficient manner. Compared to opti-
mization algorithms such as ReLSO, PRO-LDM does not require
complex norm-based negative sampling to achieve a convex la-
tent space for gradient-based optimization. The process is conve-
niently tunable using the classier-free guidance hyperparameter
𝜔, which allows outlier sequence generation to design novel pro-
tein variants that surpass the performance of native species, as
demonstrated by the highly fluorescent and stable GFP reported
in the manuscript. The wide distribution of mutated residues in
both the chromophore center and surrounding scaffold further
demonstrated the capability of PRO-LDM to learn global rep-
resentations from proteins sequences, while being versatile in
reproducing them in a de novo rather than mutation-based ap-
proach. When trained with more diverse data, the framework
showed capability to generate protein species not associated with
specific protein families in a dataset-dependent manner.

PRO-LDM has shown advantage over existing diffusion-
based sequence design models in several ways. EvoDiff fea-
tures evolutionary-scale sequence information for pre-training to
generate nature-like proteins, including those with disordered
regions.[13] In comparison, PRO-LDM doesn’t require genome-
scale training data and is computationally efficient, which pro-
vides easy access for routine design work with optimization capa-
bility through outlier design that allows quick experimental veri-
fication in biolabs. LaMBO-2 adopts a classifier-guided diffusion
modeling for sampling to extend the Bayesian optimization pro-
cedure for sequence design, which relies on the determination of
positional weights in sequences via the gradient of the value func-
tion with respect to sequence embedding.[14] Such process does
not present in the transformer-based PRO-LDM, which learns
contextual relationships between amino acids through a de novo
approach. The elimination of the need to additionally evaluate the
relative importance of different positions in specific properties or
functions simplifies the design process.
Beyond the current stage of work, further improvements to the

combination with structure-based generative models may help to
provide an end-to-end pipeline for highly precise protein scaffold
customization, by building a parallel neural network that aligns
information from both aspects. Such multimodal learning, inte-
grated with publicly available and readily deployable large-scale
protein language models may also enable latent zero-shot/few-
shot prediction and protein sequence generation.
Due to the compatibility of PRO-LDM’s directed-design func-

tion with labeled sequence data, the model is not restricted to
protein datasets. In principle, PRO-LDM can also be trained on
alternative sequence data such as genomic datasets, enabling its
potential use in gene editing or RNA vaccine design. Such re-
quired annotated sequence datasets are being progressively gen-
erated from both high-throughput omic technologies and com-
putational prediction platforms, which may provide solid re-
search and technological foundation for PRO-LDM’s application
in a broader realm of molecular biology problems.

4. Experimental Section
Network Architecture: The backbone of our model was a jointly trained

autoencoder as developed in ReLSO. The encoder employed a four-head
transformer with six hidden layers, each having a dimension of 200. A bot-
tleneck module, consisting of a fully connected layer, was applied to com-
press the embedded information into the latent space, projecting each
sequence into a latent variable z with a default dimensionality of 64. The
decoder used four 1D convolutional layers to reconstruct sequences from
latent variables. Rectified linear unit’s (ReLU) activation and batch normal-
ization layers were incorporated between convolutional layers, except for
the final layer.

In parallel with the decoder, an MLP-based regressor, composed of one
fully connected layer featuring a dropout rate of 0.2, was employed to pre-
dict fitness in our model. A classifier-free diffusion guidance model was
leveraged between the encoder and decoder, which consisted of a four-
layer 1D-convolutional U-Net that captured the disturbed latent distribu-
tion of each diffusion step, with the total number of diffusion steps set to
500 by default. This approach facilitated learning the latent space of the
sequences and enabled the conditional generation of z.

Network Training and Labeled Fitness: The distinct labels were as-
signed to sequences based on various fitness ranges. An 8-label division
method was adopted over rounding fitness values. The procedure pre-
processed each dataset and visualized the relationship between dataset
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length and fitness distribution. Boundaries for fitness and sequence length
were then established and uniformly divided into eight segments, with a
few datasets being divided into five segments. For the unsupervised task,
the labels were uniformly set to 0.

Network Training and Sequence Generation: Sequences were fed into
the encoder as strings during training, using an embedding layer with a
dimension of 100, followed by the transformer learning the interdepen-
dencies between residues. A bottleneck layer then compressed the discrete
high-dimensional sequence information into a 64D latent variable z. All z
values constituted a continuous, condensed latent space of sequences.
The fitness label was simultaneously introduced into the conditional dif-
fusion model as input to learn the distribution of information in the latent
space. Finally, z served as input for both the decoder and regressor, where
the fitness value was introduced during supervised learning for fitness pre-
diction. Themodel was trained for 500 epochs using the AdamWoptimizer
with a cosine annealing learning rate starting at 0.00002 on four 32GB
V100 graphics processing units and employing a batch size of 512.[53] The
diffusion timestep was set 500.

Dataset Selection and Processing: Luciferase_RAW dataset: Hawkins-
Hooker et al. downloaded sequences containing a luciferase-like do-
main (IPR011251) from InterPro (https://www.ebi.ac.uk/interpro/).[22]

The dataset contained 69,130 sequences with a maximum sequence
length of 504 amino acids. The sequence identity threshold used during
the splitting of the training and validation sets was 70%. The dataset was
used to evaluate model’s generation capability with training on homolo-
gous proteins within the same domain.

Luciferase_MSA dataset: Based on Luciferase_RAW, Hawkins-Hooker
et al. used Clustal Omega with the profile Hidden Markov Model (HMM)
on the bacterial luciferase family from Pfam to create a MSA version of Lu-
ciferase_RAW dataset, incorporating additional evolutionary information
for training.[22]

MDH dataset: Donatas et al. constructed the MDH dataset utilizing a
family of bacterial malate dehydrogenase (MDH) enzymes.[26] The dataset
comprised 16,898 sequences, with an average length of 319 ± 18.2 amino
acids. The pairwise identity of the sequences was based on a threshold of
10%. The identity threshold of sequence used during the splitting of the
training and validation sets was set at 70%. MDH dataset was selected
for dual validation of the unconditional generation capability of PRO-LDM
and evaluation of its generalization ability across diverse protein families.

Mutation datasets: We trained and tested conditional PRO-LDM on
nine deep mutational scanning datasets: Gifford,[54] GFP,[55] TAPE,[56]

Bgl3,[57] Pab1,[58] Ube4b,[59] HIS7,[60] CAPSD[61] and B1LPA6.[62] The ef-
fect of substitutions was evaluated using the initial six datasets, while the
remaining three datasets were employed to examine the impact of inser-
tions and deletions (indels). More details regarding these nine datasets
could be found in Table S3 (Supporting Information).

Due to the unequal sequence lengths in the Luciferase_RAW,MDH and
indels datasets, we employed padding symbols to align all sequences with
the length of the longest sequence.

Protein Structure Prediction by Alphafold2: Alphafold2 and Alphafold3
were used to predict structures for sequences generated during the denois-
ing process.[4] The service was provided for free by Zhejiang Gene Com-
putation Platform (https://cloud.aigene.org.cn/) and Alphafold server
(https://alphafoldserver.com/).

Amino Acids’ Pearson’s Correlation and Dimension Reduction: For each
sequence randomly selected from dataset, a 2D matrix was generated to
represent the likelihood of different amino acids occurring at each residue
position in the matrix [20, seq_length]. Pearson’s correlation was calcu-
lated to determine the relationship between each amino acid pair. The
mean value was calculated from the amino acid embeddings of all se-
quences, followed by dimension reduction through PCA.

Latent Space Representations of Protein Sequence Visualization: To eval-
uate the capacity of sequence-level representation generated by PRO-LDM
in the latent space and to distinguish the functionality of proteins, the sub-
family accession numbers were obtained for luciferase from InterPro. The
latent representation for the nine largest sub-family proteins was encoded
and generated. PCA was employed for dimension reduction and visualiza-
tion of representations into 2D space.

Identity Analysis of Generated and Natural Sequences: Sequences
(number same as training set) were generated at 50-epoch intervals
for three unlabeled datasets (MDH, luciferase_MSA, luciferase_RAW)
throughout the training process. BLAST (http://www.ncbi.nlm.nih.gov/
BLAST/) was employed to conduct sequence alignments on generated se-
quences and calculate their identities in comparison to the natural set,
represented in box plots.

Multiple Sequence Alignments and Shannon Entropy: One thousand
training sequences and 1 000 generated sequences were randomly se-
lected, combined and input into Clustal Omega for alignment.[63] In cases
where mismatch occurred, non-matching positions were replaced with a
dash (“-“), referred as a gap. The training and generated sequences were
separated, and columns exhibiting over 75% gap ratio were removed. The
Shannon entropies of both sets were calculated separately using the fol-
lowing equation:

SE = −
20∑
i=1

p (xi) log20p (xi) (7)

where p(xi) represented the frequency of amino acid i in one column of the
MSA.

Logo Figure: One thousand sequences from both the training set
and the generated set were selected and input into Clustal Omega for
alignment.[63] Frequency matrices were computed for both sequence
groups, where conserved positions were identified. tBtool and R were em-
ployed for visualization. Both ggseqlogo[64] and ggplot2[65] in R were used
to create and enhance the graphical presentations. The gridExtra package
was used to consolidate the visualizations of both sequence groups and
their correlation at the conserved positions.

Pairwise Amino Acid Frequency Distribution: One thousand sequences
were selected from both the training set and the generated set to
perform multiple sequence alignment. Pairwise amino acid occurrence
frequency matrices of dimensions [seq_length, seq_length] were com-
puted for each sequence. The matrices were then reshaped to [1,
seq_length × seq_length] and all sequences were concatenated in the
training/generated set. Two groups of metrics were obtained with dimen-
sions [seq_num, seq_length × seq_length], which were used to calculate
the Pearson’s correlation coefficient.

Sequence Diversity Analysis: Generated sequences fromPRO-LDMand
VAEmodels in alignments with the number of training sets were used. The
MMseqs2 in MPI Bioinformatics Toolkit (https://toolkit.tuebingen.mpg.
de/tools/mmseqs2) was used to cluster sequences at different identity
threshold to obtain a diversity value, and Origin was used to fit the curves
using non-linear function.[66–68]

Sequence Stability Analysis: Sixty-four sequences were generated by
PRO-LDM and VAE models respectively, and compared with randomly se-
lected 64 sequences from training sets. Biopython was used to calculate
the instability index for each sequence, and matplotlib was used to make
the box plot.[28]

ProteinBERT and Tranception: ProteinBERT is a deep language model
pretrained with Gene Ontology (GO) annotation predictions and tested
with downstream tasks with diverse protein properties.[39] The pretrained
ProteinBERT was fine-tuned using GFP dataset in TAPE[31] before test-
ing PRO-LDM generated sequences. Tranception is a SOTA transformer-
based fitness prediction model employed to test PRO-LDM generated
sequences.[40] A higher Tranception score indicated superior functional-
ity.

Average pLDDT and r.m.s.d: One hundred generated outlier se-
quences at different𝜔 values were randomly selected for Alphafold2 struc-
ture prediction on Zhejiang Gene Computation Platform. We downloaded
all successfully predicted PDB files, extracted the pLDDT value for each
atom, and calculated the mean value for all atoms. The Superimposer
module in biopython was used to calculate the r.m.s.d. value between the
generated protein and pro_H.

Superimposition of Predicted Structures: The predicted structures for
the generated protein, pro_H, and wt-GFP by Alphafold2 were used. Struc-
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ture pairs were aligned in PyMOL (https://pymol.org) to visualize the su-
perimposition of chromophores with hydrogen bond visualized.

EvoDiff Training and Validation: The source code of EvoDiff (https:
//github.com/microsoft/evodiff) was downloaded for training on GFP
dataset from scratch or fine tuning with 128 batch size. All three versions
of the model (oadm38M, D3PM_BLOSUM_38 M, D3PM_UNIFORM_38
M) achieved convergence before the 10th epoch, and we used the 10th
epoch checkpoint (both for training from scratch and fine tuning) to gen-
erate GFP sequences for analysis and comparison with PRO-LDM.

The Recon KL was calculated using 1000 generated sequences and
1 000 randomly selected test sequences. The minimum Hamming dis-
tance was assessed between the 1 000 generated sequences and the
entire training set. The r.m.s.d. against pro_H was calculated using
the AlphaFold3-predicted structures of five randomly generated GFP se-
quences (each model) and pro_H. Additionally, the sequence average
pLDDT (seq avg. pLDDT) was derived from these AlphaFold3-predicted
structures. The minimum hamming distance, r.m.s.d. against pro_H and
seq avg. pLDDT were reported for each model as the mean ± standard
deviation.

For performance comparison of MSA sequences generation, the query
sequences were generated from 64 luciferase_MSA sequences using ran-
dom or max-Hamming subsampled MSAs. In addition, we trained the
oadm variant of EvoDiff from scratch and fine-tuned it using the Lu-
ciferase_MSA dataset. The model trained from scratch reached conver-
gence before the 70th epoch, while the fine-tuned version converged be-
fore the 80th epoch. Accordingly, we used the checkpoints from the 70th
and 80th epochs, respectively, for sequence generation. The sequence av-
erage pLDDT was also derived from the AlphaFold3-predicted structures.

Sequence Generation Using ESM-3: We employed the webserver of
EvolutionaryScale Forge to generate GFP variants. The server was con-
figured with the esm3-medium-2024-08 model. To guide the generation
process, we used the AlphaFold3-predicted structure of the pro_H protein
as a structural prompt, and set the sampling temperature to 0.7.

ProGen2 Finetuning and Sampling: The source code of ProGen2
(https://github.com/enijkamp/progen2) and the finetuning code (https:
//github.com/hugohrban/ProGen2-finetuning) were downloaded. The
GFP dataset was used to fine-tune the ProGen2-small model with a batch
size of 32. The training loss converged prior to the 10th epoch, and the
model checkpoint from the 10th epoch was subsequently used to generate
novel GFP sequences. During sampling, the temperature was set to 1.0,
and the prompt ‘<gfp>1SKGEELFTGV’ was provided to guide the gener-
ation of complete GFP sequences.

PRO-LDM(ESM2): The ESM2 (8 M) model was used to replace the
original PRO-LDM encoder, with the tensor from its final representative
layer fed into the pooling layer. The pretrained checkpoint was loaded and
kept frozen during the first epoch, then unfrozen starting from the second
epoch. Wandb was used to visualize the training process. For uncondi-
tional generation, PRO-LDM(ESM2) was trained on Swissprot or CATH
and the checkpoints at 50th epoch were loaded to generated new protein
sequences.

JT-AE Ablation Study: The source code of ReLSO (https:
//github.com/KrishnaswamyLab/ReLSO-Guided-Generative-Protein-
Design-using-Regularized-Transformers) was dowloaded. For uncondi-
tional generation, the latent representation after training was sampled
randomly and decoded to design novel sequences. For conditional gener-
ation, we followed the same optimization strategy reported in the article
and source code.[18] The fitness of generated sequences was evaluated
using the regressor, and their latent representations were reduced in
dimensionality using PCA. The visualization of box plots and scatter plots
was accomplished using the Python packageMatplotlib.

TM Score: We used TMalign (https://zhanggroup.org/TM-align/) to
calculate the TM scores between predicted structures of generated se-
quences and training sequences, as well as the TM scores among the train-
ing sequences themselves.

Protein Expression and Purification: The gene of wt-GFP, pro_H,
pro_1498 and pro_2421 were codon optimized, synthesized and cloned
into pET-28a (+) plasmid by GenScript. The plasmids were trans-
formed into E.coli Rosetta (DE3) cells with kanamycin resistance. Sin-

gle colonies were inoculated for seed culture at 37°C, 220 rpm for 16 h,
which were transferred 1:100 to fresh LB medium. After OD600 values
reached 0.6-0.8, a final concentration of 1 mM IPTG (Isopropyl 𝛽-D-1-
thiogalactopyranoside) was added to induce protein expression. Cells were
collected after 4 h by centrifugation for 3 min at 10 000 g, while cell pel-
lets were collected and washed two times. Pellets were then resuspended
in TBS buffer (0.05 M Tris-HCl, 0.15 M NaCl) for subsequent characteri-
zations. A rigid 𝛼-helical linker GSLAEAAAKEAAAKEAAAKAAAAS was in-
serted between GFP and mKate2, to reduce intramolecular interactions
and suppress Förster resonance energy transfer (FRET) between the fluo-
rescent proteins.[55,69]

For in vitro characterization, GFP-6×His plasmids were generated for
all four variants using the Golden Gate Cloning method. After expression,
the cells were disrupted using ultrasonic homogenization (SCIENTZ-IID),
and the lysate was centrifuged (11627 × g, 10 min) to separate super-
natant and pellet fractions. The fractions were then analyzed by SDS-PAGE
(MeilunGel). The proteins were purified from cell lysate through affinity
chromatography using Ni Smart Beads 6FF (BDTL0063, Biodragon). The
purified proteins were stored in 1×TBS (pH7.4) or 1× PBS (pH7.0) buffer.

Fluorescent Intensity Characterization:

1) Qualitative detection: Cell pellets resuspended in TBS buffer were ad-
justed to identical optical density by spectrophotometer and imaged
at an excitation wavelength of 480 nm using ChemiScope 6200 (Clinx).

2) Quantitative detection of fluorescence intensity against OD600: Bac-
teria culture with GFP expressions were diluted by a factor of two
from the highest concentration to six gradient concentrations. Sam-
ples were aliquoted into a 96-well black plate with clear bottom, and a
baseline of 50 mM TBS was established. The fluorescence intensities
from each variant at 485 nm excitation wavelength were measured us-
ing the SPARK multimode microplate reader. The data were fit using
the third order polynomial model. Three sets of replicate experiments
were conducted.

3) Quantitative detection of fluorescence intensity against RFP: Bacteria
culture with expressions of GFP-RFP fusion proteins were diluted by
64-fold, as the fluorescence intensity of pro_2421 exceeded the de-
tection limit of the spectrophotometer at higher concentrations. The
green fluorescence intensities at 485 nm excitation wavelength were
measured using the Agilent BioTek Synergy H1 multimode reader. The
red fluorescence intensities were measured at 588 nm excitation wave-
length with 633 nm emission filter. Three sets of replicate experiments
were conducted.

Fluorescence Spectrum Scanning: Bacteria culture with GFP variant ex-
pressions were added to quartz cuvettes and a baseline of 50 mm TBS was
established. The excitation spectra were obtained by scanning a range of
excitation wavelength at 309–

490 nmwith a fixed emission wavelength at 510 nm. The emission spec-
tra were obtained by a range of emission wavelength at 450–550 nm with
a fixed excitation wavelength at 395 nm. The fluorescence spectrum were
acquired on FL 6500 Fluorescence Spectrophotometer.

Western Blot: Bacteria lysates at the same OD600 reading were sub-
jected to SDS-Page gel-electrophoresis on MeilunGel protein precast gel
and transferred onto PVDF (polyvinylidene fluoride) membrane using
iBlotTM3 Western Blot Transfer System. The transferred membrane was
blocked with 4% skimmilk (Nacalai Tesque, Inc.) in TBST (TBS with 0.05%
Tween 20) for 1 h, and incubated with primary antibody (6 ×His Tag Mon-
oclonal Antibody, Invitrogen, 1:5000 dilution) overnight at 4 °C. The mem-
brane was then washed 3 times with TBST buffer, and incubated with sec-
ondary antibody (Goat anti-Mouse IgG (H+L) Secondary Antibody HRP,
Invitrogen, 1:20000 dilution) for 1 h at room-temperature. Highly sensi-
tive plus ECL luminescence (Sangon Biotech) was used to visualize the
proteins under Fusion FX Edge Spectra imaging system (Vilber Lourmat).
ImageJ was used to compare sample intensities.

Chemical Stability and pKa: The pH titration buffers were prepared
in 50 mL centrifuge tubes and adjusted to pH = 3.14, 4.13, 5.16, 6.13,
7.09, 7.97, 9.28 and 10.27, respectively. The compositions for pH titra-
tion buffers are: 1) 100 mM citric acid/Na citrate (pH 3–5.5); 2) 100 mM
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KH2PO4/Na2HPO4 (pH 6–8); and 3) 100 mM NaOH/Glycine (pH 8.5–
10). Each buffer (100 μL) was pipetted into the 96-well plate in increasing
incremental pH values. The first row was the control (pKa buffer and pro-
tein buffer) and the second row had 100 μL of GFPs added. After incubating
at 30 °C for 60 min, the fluorescent intensity was measured using the Ag-
ilent BioTek Synergy H1 multimode reader. The chemical stability curves
were plotted using Prism 10, and the pKa values were fitted and calculated
by CubicSpline package in Python.

Thermal Stability: GFP solutions (20 μL) in TBS (pH7.4) were added
into 8-tube PCR strips and heated from 30 to 90 °C with a 10 °C gradient,
then maintaining the temperature for 10 min. The fluorescent intensity
was measured using the Agilent BioTek Synergy H1 multimode reader.

Extinction Coefficient: The EC was calculated by assuming that the
peak value of NaOH-denatured fluorescent proteins was the same as that
of the NaOH-denatured GFP-type chromophore, which is 44 000 M−1

cm−1.[70] The concentration obtained from the NaOH-denatured sam-
ple was used to determine the peak extinction coefficient for the native
sample. 0.125 M (final concentration) NaOH was used as the alkaline
denaturant.[70] The fluorescent intensity of denatured (measured at 447
nm) and native samples (measured at each protein’s maximum excitation
wavelength) was measured using the Agilent BioTek Synergy H1 multi-
mode reader.

Quantum Yield: GFP solutions in 1×PBS (pH7.0) were added to
quartz cuvettes with the established baseline of 1×PBS. The quantum yield
values were measured by Quantaurus-QY Plus (HAMAMAYSU) at each
protein’s maximum excitation wavelength.

Statistical Analysis: All statistical analysis was performed with the cor-
responding Python packages. Data presented in this work were expressed
as the mean± standard deviation (SD). The sample sizes used for statisti-
cal analyses differed across experiments. Specific numbers were provided
in respective figures and detailed in respective sections, including Multi-
ple Sequence Alignments and Shannon Entropy, Logo Figure, Pairwise Amino
Acid Frequency Distribution, Sequence Stability Analysis, and EvoDiff Training
and Validation. Box charts were determined by the 25th–75th percentiles.
Mann-Whitney U test was used to determine the statistical significance of
observed differences between different amino acids with different prop-
erties and p < 0.05 was considered significant. Correlation analyses were
conducted using both Pearson’s correlation and Spearman’s rank correla-
tion, with the corresponding functions from the script.statsmodule utilized
for computation.
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